1
0
Fork 0
rki-impfparser/plot.py

286 lines
12 KiB
Python
Raw Normal View History

#!/usr/bin/python
# vim: set fileencoding=utf-8 :
2021-01-14 23:16:40 +00:00
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import datetime
import re
import requests as req
import locale
import os.path
import shutil
locale.setlocale(locale.LC_ALL, 'de_DE.UTF-8')
site_folder = 'site/'
data_folder = 'data/'
2021-01-14 23:16:40 +00:00
einwohner_deutschland = 83190556
herd_immunity = 0.7
2021-01-14 23:16:40 +00:00
today = datetime.date.today()
print_today = today.isoformat()
filename_now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
2021-01-14 23:16:40 +00:00
# DIN A4 Plots
plt.rcParams["figure.figsize"] = [11.69, 8.27]
# Download
data_filename = '{}/{}_Impfquotenmonitoring.xlsx'.format(data_folder, filename_now)
r = req.get('https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Impfquotenmonitoring.xlsx?__blob=publicationFile')
with open(data_filename, 'wb') as outfile:
outfile.write(r.content)
rki_file = pd.read_excel(data_filename, sheet_name=None, engine='openpyxl')
raw_data = rki_file['Impfungen_proTag']
2021-01-14 23:16:40 +00:00
impfungen = raw_data[:-1].dropna()
dates = impfungen['Datum']
daily = impfungen['Gesamtzahl Impfungen']
cumulative = np.cumsum(impfungen['Gesamtzahl Impfungen'])
total_vaccinations = int(np.sum(daily))
total_vaccinations_percentage = float(total_vaccinations) / einwohner_deutschland
2021-01-14 23:16:40 +00:00
mean_vaccinations_daily = np.mean(daily)
mean_vaccinations_daily_int = int(np.round(mean_vaccinations_daily))
2021-01-14 23:16:40 +00:00
to_be_vaccinated = einwohner_deutschland - total_vaccinations
2021-01-14 23:16:40 +00:00
days_extrapolated = int(np.ceil(to_be_vaccinated / mean_vaccinations_daily))
extrapolated_dates = np.array([dates[0] + datetime.timedelta(days=i) for i in range(days_extrapolated)])
mean_vaccinations_daily_done = extrapolated_dates[-1]
mean_vaccinations_daily_herd_immunity = extrapolated_dates[int(np.ceil(days_extrapolated * herd_immunity))]
days_extrapolated_with_todays_rate = int(np.ceil(to_be_vaccinated / daily.iloc[-1]))
last_date = dates.iloc[-1]
last_date_day_rate = daily.iloc[-1]
last_date_day_rate_done = dates[0] + datetime.timedelta(days=days_extrapolated_with_todays_rate)
last_date_day_rate_herd_immunity = dates[0] + datetime.timedelta(days=int(np.ceil(days_extrapolated_with_todays_rate * herd_immunity)))
extrapolated_vaccinations = mean_vaccinations_daily * range(1, days_extrapolated + 1)
2021-01-14 23:16:40 +00:00
days_since_start = (dates.iloc[-1].date() - dates[0].date()).days
print(days_since_start)
mean_vaccinations_last_seven_days = np.mean(daily[-7:])
mean_vaccinations_last_seven_days_int = int(np.round(mean_vaccinations_last_seven_days))
days_extrapolated_last_seven_days = int(np.ceil(to_be_vaccinated / mean_vaccinations_last_seven_days))
extrapolated_vaccinations_last_seven_days = total_vaccinations + mean_vaccinations_last_seven_days * range(-days_since_start, days_extrapolated - days_since_start)
mean_vaccinations_last_seven_days_done = dates.iloc[-1] + datetime.timedelta(days=days_extrapolated_last_seven_days)
mean_vaccinations_last_seven_days_herd_immunity = dates.iloc[-1] + datetime.timedelta(days=int(np.ceil(days_extrapolated_last_seven_days * herd_immunity)))
mean_vaccinations_daily_up_to_date = np.round(cumulative / range(1, len(cumulative) + 1))
print(extrapolated_vaccinations[:20])
print(extrapolated_vaccinations_last_seven_days[:20])
print(cumulative)
2021-01-14 23:16:40 +00:00
# Stand aus Daten auslesen
#stand = dates.iloc[-1]
#print_stand = stand.isoformat()
# Stand aus offiziellen Angaben auslesen
stand = rki_file['Erläuterung'].iloc[1][0]
2021-01-14 23:16:40 +00:00
stand_regex = re.compile('^Datenstand: (\d\d.\d\d.\d\d\d\d, \d\d:\d\d) Uhr$')
m = stand_regex.match(stand)
stand_date = datetime.datetime.strptime(m.groups()[0], '%d.%m.%Y, %H:%M')
print_stand = stand_date.isoformat()
filename_stand = stand_date.strftime("%Y%m%d%H%M%S")
# Infos der einzelnen Länder
details_sheet_name = (set(rki_file.keys()) - {'Erläuterung', 'Impfungen_proTag'}).pop()
details_sheet = rki_file[details_sheet_name]
land_names = details_sheet['Bundesland'].iloc[0:17]
total_vaccinations_by_land = details_sheet['Impfungen kumulativ'].iloc[0:17]
vaccination_per_mille_by_land = details_sheet['Impfungen pro 1.000 Einwohner'].iloc[0:17]
vaccination_reason_age_by_land = details_sheet['Indikation nach Alter*'].iloc[0:17]
vaccination_reason_job_by_land = details_sheet['Berufliche Indikation*'].iloc[0:17]
vaccination_reason_medical_by_land = details_sheet['Medizinische Indikation*'].iloc[0:17]
vaccination_reason_oldhome_by_land = details_sheet['Pflegeheim-bewohnerIn*'].iloc[0:17]
details_per_land = {}
details_per_land_formatted = {}
for i in range(len(land_names)):
details_per_land[land_names[i]] = {
'total_vaccinations': int(total_vaccinations_by_land[i]),
'total_vaccinations_percentage': vaccination_per_mille_by_land[i] / 10,
'vaccination_reason_age': int(vaccination_reason_age_by_land[i]),
'vaccination_reason_age_percentage': np.round(vaccination_reason_age_by_land[i] / total_vaccinations_by_land[i] * 100),
'vaccination_reason_job': int(vaccination_reason_job_by_land[i]),
'vaccination_reason_job_percentage': np.round(vaccination_reason_job_by_land[i] / total_vaccinations_by_land[i] * 100),
'vaccination_reason_medical': int(vaccination_reason_medical_by_land[i]),
'vaccination_reason_medical_percentage': np.round(vaccination_reason_medical_by_land[i] / total_vaccinations_by_land[i] * 100),
'vaccination_reason_oldhome': int(vaccination_reason_oldhome_by_land[i]),
'vaccination_reason_oldhome_percentage': np.round(vaccination_reason_oldhome_by_land[i] / total_vaccinations_by_land[i] * 100),
}
details_per_land_formatted[land_names[i]] = {
'total_vaccinations': '{:n}'.format(int(total_vaccinations_by_land[i])).replace('.', ''),
'total_vaccinations_percentage': '{:.3n}'.format(np.round(vaccination_per_mille_by_land[i] / 10, 2)),
'vaccination_reason_age': '{:n}'.format(int(vaccination_reason_age_by_land[i])).replace('.', ''),
'vaccination_reason_age_percentage': '{:n}'.format(np.round(vaccination_reason_age_by_land[i] / total_vaccinations_by_land[i] * 100)),
'vaccination_reason_job': '{:n}'.format(int(vaccination_reason_job_by_land[i])).replace('.', ''),
'vaccination_reason_job_percentage': '{:n}'.format(np.round(vaccination_reason_job_by_land[i] / total_vaccinations_by_land[i] * 100)),
'vaccination_reason_medical': '{:n}'.format(int(vaccination_reason_medical_by_land[i])).replace('.', ''),
'vaccination_reason_medical_percentage': '{:n}'.format(np.round(vaccination_reason_medical_by_land[i] / total_vaccinations_by_land[i] * 100)),
'vaccination_reason_oldhome': '{:n}'.format(int(vaccination_reason_oldhome_by_land[i])).replace('.', ''),
'vaccination_reason_oldhome_percentage': '{:n}'.format(np.round(vaccination_reason_oldhome_by_land[i] / total_vaccinations_by_land[i] * 100)),
}
archive_folder = site_folder + 'archive/' + filename_stand
if os.path.isdir(archive_folder):
print('Archive folder {} already exists'.format(archive_folder))
else:
os.mkdir(archive_folder)
2021-01-14 23:16:40 +00:00
def plot_extrapolation_portion(percentage):
print_percentage = int(percentage * 100)
archive_plot_filename = '{}/extrapolated_to_{}_percent'.format(archive_folder, print_percentage)
latest_plot_filename = '{}/extrapolated_to_{}_percent'.format(site_folder, print_percentage)
if os.path.isfile(archive_plot_filename + '.pdf'):
print('Plot {} already exists'.format(archive_plot_filename))
return
2021-01-14 23:16:40 +00:00
fig, ax = plt.subplots(1)
plt.title(
'Tägliche Impfquote, kumulierte Impfungen und lineare Extrapolation bis {:n} % der Bevölkerung Deutschlands\n'
'Erstellung: {}, Datenquelle: RKI, Stand: {}\n'
'Impfungen gesamt: {:n} ({:n} %), Durchschnittliche Impfrate: {:n} Impfungen/Tag'.format(
print_percentage,
print_today, print_stand,
total_vaccinations, np.round(total_vaccinations_percentage * 100, 2), mean_vaccinations_daily_int
)
2021-01-14 23:16:40 +00:00
)
ax2 = ax.twinx()
ax.bar(dates, daily, label='Tägliche Impfungen', color='blue')
ax.plot(dates, mean_vaccinations_daily_up_to_date, color='violet', label='Durchschnittliche Impfquote\nbis zu diesem Tag (inkl.)')
2021-01-14 23:16:40 +00:00
ax2.set_ylim([0, einwohner_deutschland * percentage])
ax2.set_xlim(xmax=dates[0] + datetime.timedelta(days=percentage * days_extrapolated))
ax2.grid(True)
ax2.plot(dates, cumulative, color='red', label='Kumulierte Impfungen')
ax2.plot(extrapolated_dates, extrapolated_vaccinations, color='orange', label='Extrap. kumulierte Impfungen (Øgesamt)\n{:n} Impfungen/Tag'.format(mean_vaccinations_daily_int))
ax2.plot(extrapolated_dates, extrapolated_vaccinations_last_seven_days, color='goldenrod', label='Extrap. kumulierte Impfungen (Ø7 Tage)\n{:n} Impfungen/Tag'.format(mean_vaccinations_last_seven_days_int))
2021-01-14 23:16:40 +00:00
#ax2.plot()
ax.legend(loc='upper left')
ax.get_yaxis().get_major_formatter().set_scientific(False)
ax.set_xlabel('Datum')
ax.set_ylabel('Tägliche Impfungen')
ax2.legend(loc='center right')
ax2.get_yaxis().get_major_formatter().set_scientific(False)
# Estimated percentage for herd immunity
#ax2.axline((0, einwohner_deutschland * 0.7), slope=0, color='green')
2021-01-14 23:16:40 +00:00
ax2.set_ylabel('Kumulierte Impfungen')
plt.savefig(archive_plot_filename + '.pdf')
plt.savefig(archive_plot_filename + '.png')
plt.savefig(latest_plot_filename + '.pdf')
plt.savefig(latest_plot_filename + '.png')
2021-01-14 23:16:40 +00:00
plt.close()
print('Created plot {} as pdf and png'.format(archive_plot_filename))
2021-01-14 23:16:40 +00:00
plot_extrapolation_portion(0.1)
plot_extrapolation_portion(0.7)
2021-01-14 23:16:40 +00:00
plot_extrapolation_portion(1.0)
def render_dashboard():
dashboard_filename = 'site/index.xhtml'
dashboard_archive_filename = 'site/archive/{}/index.xhtml'.format(filename_stand)
stylesheet_filename = 'site/rki-dashboard.css'
stylesheet_archive_filename = 'site/archive/{}/rki-dashboard.css'.format(filename_stand)
if os.path.isfile(dashboard_archive_filename):
print('Dashboard {} already exists'.format(dashboard_archive_filename))
return
from jinja2 import Template, Environment, FileSystemLoader, select_autoescape
env = Environment(
loader=FileSystemLoader('./'),
autoescape=select_autoescape(['html', 'xml', 'xhtml'])
)
german_text_date_format = '%d. %B %Y'
df = german_text_date_format
german_text_datetime_format = '%d. %B %Y, %H:%M:%S Uhr'
dtf = german_text_datetime_format
latest_dashboard_filename = site_folder + 'index.xhtml'
archive_dashboard_filename = archive_folder
template = env.get_template('dashboard_template.xhtml')
template.stream(
stand = stand_date.strftime(dtf),
filename_stand = filename_stand,
einwohner_deutschland = '{:n}'.format(einwohner_deutschland).replace('.', ''),
herd_immunity = '{:n}'.format(int(herd_immunity * 100)),
total_vaccinations = '{:n}'.format(total_vaccinations).replace('.', ''),
total_vaccinations_percentage = '{:.3n}'.format(total_vaccinations_percentage * 100),
days_since_start = days_since_start,
last_date = last_date.strftime(df),
last_date_day_rate = '{:n}'.format(last_date_day_rate).replace('.', ''),
mean_vaccinations_daily = '{:n}'.format(mean_vaccinations_daily_int).replace('.', ''),
mean_vaccinations_daily_herd_immunity = mean_vaccinations_daily_herd_immunity.strftime(df),
mean_vaccinations_daily_done = mean_vaccinations_daily_done.strftime(df),
last_date_day_rate_herd_immunity = last_date_day_rate_herd_immunity.strftime(df),
last_date_day_rate_done = last_date_day_rate_done.strftime(df),
mean_vaccinations_last_seven_days = '{:n}'.format(mean_vaccinations_last_seven_days_int).replace('.', ''),
mean_vaccinations_last_seven_days_herd_immunity = mean_vaccinations_last_seven_days_herd_immunity.strftime(df),
mean_vaccinations_last_seven_days_done = mean_vaccinations_last_seven_days_done.strftime(df),
details_per_land = details_per_land_formatted
).dump('site/index.xhtml')
shutil.copyfile(dashboard_filename, dashboard_archive_filename)
shutil.copyfile(stylesheet_filename, stylesheet_archive_filename)
print('Created dashboard')
render_dashboard()