diff --git a/dashboard_template.xhtml b/dashboard_template.xhtml
index 946337c..836d293 100644
--- a/dashboard_template.xhtml
+++ b/dashboard_template.xhtml
@@ -22,8 +22,6 @@
 			<p class="data-text">
 				Gestern wurden <em>{{ '{:n}'.format(data_first_vaccination.vaccinations_last_day).replace('.', ' ') }}</em> Erstimpfungen vorgenommen (<em>{{ '{:.3n}'.format(data_first_vaccination.vaccinations_last_day_percentage) }} %</em> der Bevölkerung, <em>{{ '{:.3n}'.format(data_first_vaccination.vaccinations_last_day_vaccination_percentage) }} %</em> der verabreichten Erstimpfdosen).
 				Innerhalb der letzten Kalenderwoche sind <em>{{ '{:.9n}'.format(data_first_vaccination.vaccinations_last_week).replace('.', ' ') }}</em> Erstimpfungen erfolgt (<em>{{ '{:.3n}'.format(data_first_vaccination.vaccinations_last_week_percentage) }} %</em>, <em>{{ '{:.3n}'.format(data_first_vaccination.vaccinations_last_week_vaccination_percentage) }} %</em>).
-				Es wurden außerdem <em>{{ '{:n}'.format(data_second_vaccination.vaccinations_last_day).replace('.', ' ') }}</em> Zweitimpfungen vorgenommen (<em>{{ '{:.3n}'.format(data_second_vaccination.vaccinations_last_day_percentage) }} %</em> der Bevölkerung, <em>{{ '{:.3n}'.format(data_second_vaccination.vaccinations_last_day_vaccination_percentage) }} %</em> der verabreichten Erstimpfdosen).
-				Innerhalb der letzten Kalenderwoche sind <em>{{ '{:.9n}'.format(data_second_vaccination.vaccinations_last_week).replace('.', ' ') }}</em> Zweitimpfungen erfolgt (<em>{{ '{:.3n}'.format(data_second_vaccination.vaccinations_last_week_percentage) }} %</em>, <em>{{ '{:.3n}'.format(data_second_vaccination.vaccinations_last_week_vaccination_percentage) }} %</em>).
 			</p>
 			<p class="data-text">
 				In den letzten sieben Tagen wurden durchschnittlich <em>{{ '{:n}'.format(data_first_vaccination['extrapolation_mean_seven_days']['rate_int']).replace('.', ' ') }}</em> Erstimpfungen und <em>{{ '{:n}'.format(data_second_vaccination['extrapolation_mean_seven_days']['rate_int']).replace('.', ' ') }}</em> Zweitimpfungen pro Tag vorgenommen (<em>{{ '{:n}'.format(data_first_vaccination['extrapolation_mean_seven_days']['rate_int'] * 7).replace('.', ' ') }}</em>/<em>{{ '{:n}'.format(data_second_vaccination['extrapolation_mean_seven_days']['rate_int'] * 7).replace('.', ' ') }}</em> pro Woche).
diff --git a/plot.py b/plot.py
index b1634c0..6a53770 100644
--- a/plot.py
+++ b/plot.py
@@ -52,158 +52,150 @@ plt.rcParams["figure.figsize"] = [11.69, 8.27]
 
 # Download
 
-def download_rki(filename_prefix):
-	data_filename = '{}/{}_Impfquotenmonitoring.xlsx'.format(data_folder, filename_prefix)
+data_filename = '{}/{}_Impfquotenmonitoring.xlsx'.format(data_folder, filename_now)
 
-	r = req.get('https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Impfquotenmonitoring.xlsx?__blob=publicationFile')
+r = req.get('https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Impfquotenmonitoring.xlsx?__blob=publicationFile')
 
-	with open(data_filename, 'wb') as outfile:
-		outfile.write(r.content)
+with open(data_filename, 'wb') as outfile:
+	outfile.write(r.content)
 
-	return data_filename
+#data_filename = 'data/20210118151908_Impfquotenmonitoring.xlsx'
 
-data_filename = download_rki(filename_now)
+rki_file = pd.read_excel(data_filename, sheet_name=None, engine='openpyxl')
 
-def parse_rki(filename):
+raw_data = rki_file['Impfungen_proTag']
 
-	rki_file = pd.read_excel(filename, sheet_name=None, engine='openpyxl')
+impfungen = raw_data[:-1].dropna(subset=['Datum']).fillna(0)
 
-	raw_data = rki_file['Impfungen_proTag']
+impfungen.drop(impfungen.tail(1).index,inplace=True) # remove Gesamt row
 
-	impfungen = raw_data[:-1].dropna(subset=['Datum']).fillna(0)
+dates = impfungen['Datum']
 
-	impfungen.drop(impfungen.tail(1).index,inplace=True) # remove Gesamt row
+start_of_reporting_date = dates.iloc[0].date()
 
-	dates = impfungen['Datum']
+def calculate_vaccination_data(data):
 
-	start_of_reporting_date = dates.iloc[0].date()
+	total = int(np.sum(data))
+	total_percentage = float(total) / einwohner_deutschland * 100
 
-	def calculate_vaccination_data(data):
+	to_be_vaccinated = einwohner_deutschland - total
 
-		total = int(np.sum(data))
-		total_percentage = float(total) / einwohner_deutschland * 100
+	last_date = dates.iloc[-1].date()
+	start_of_vaccination_index = (data != 0).argmax(axis=0)
+	start_of_vaccination_date = dates[start_of_vaccination_index].date()
+	days_since_start_of_vaccination = (last_date - start_of_vaccination_date).days
+	days_since_start_of_reporting = (last_date - start_of_reporting_date).days
 
-		to_be_vaccinated = einwohner_deutschland - total
+	valid_data = data[start_of_vaccination_index:]
 
-		last_date = dates.iloc[-1].date()
-		start_of_vaccination_index = (data != 0).argmax(axis=0)
-		start_of_vaccination_date = dates[start_of_vaccination_index].date()
-		days_since_start_of_vaccination = (last_date - start_of_vaccination_date).days
-		days_since_start_of_reporting = (last_date - start_of_reporting_date).days
+	cumulative = np.concatenate(([math.nan] * (days_since_start_of_reporting - days_since_start_of_vaccination), np.cumsum(valid_data)))
 
-		valid_data = data[start_of_vaccination_index:]
+	mean_all_time = np.mean(valid_data)
+	mean_seven_days = np.mean(data[-7:])
 
-		cumulative = np.concatenate(([math.nan] * (days_since_start_of_reporting - days_since_start_of_vaccination), np.cumsum(valid_data)))
+	vaccinations_by_week_map = map(lambda x: (Week.withdate(x[0]), x[1]), zip(dates, data))
 
-		mean_all_time = np.mean(valid_data)
-		mean_seven_days = np.mean(data[-7:])
+	vaccinations_by_week = {}
 
-		vaccinations_by_week_map = map(lambda x: (Week.withdate(x[0]), x[1]), zip(dates, data))
-
-		vaccinations_by_week = {}
-
-		for w, v in vaccinations_by_week_map:
-			if w in vaccinations_by_week:
-				vaccinations_by_week[w] = vaccinations_by_week[w] + v
-			else:
-				vaccinations_by_week[w] = v
-
-		def extrapolate(rate, to_be_vaccinated):
-			days_extrapolated = int(np.ceil(to_be_vaccinated / rate))
-			days_extrapolated_herd_immunity = int(np.ceil((einwohner_deutschland * herd_immunity - total) / rate))
-
-			weeks_extrapolated = int(np.ceil(days_extrapolated / 7))
-			weeks_extrapolated_herd_immunity = int(np.ceil(days_extrapolated_herd_immunity / 7))
-
-			date_done = today + datetime.timedelta(days_extrapolated)
-			date_herd_immunity = today + datetime.timedelta(days_extrapolated_herd_immunity)
-
-			extrapolated_vaccinations = total + rate * range(-days_since_start_of_reporting, days_extrapolated - days_since_start_of_reporting)
-
-			return {
-				'rate': rate,
-				'rate_int': int(np.round(rate)),
-				'days_extrapolated': days_extrapolated,
-				'days_extrapolated_herd_immunity': days_extrapolated_herd_immunity,
-				'weeks_extrapolated': weeks_extrapolated,
-				'weeks_extrapolated_herd_immunity': weeks_extrapolated_herd_immunity,
-				'date_done': date_done,
-				'date_done_str': date_done.strftime('%d. %B %Y'),
-				'date_herd_immunity': date_herd_immunity,
-				'date_herd_immunity_str': date_herd_immunity.strftime('%d. %B %Y'),
-				'extrapolated_vaccinations': extrapolated_vaccinations
-			}
+	for w, v in vaccinations_by_week_map:
+		if w in vaccinations_by_week:
+			vaccinations_by_week[w] = vaccinations_by_week[w] + v
+		else:
+			vaccinations_by_week[w] = v
 
 
-		extrapolation_mean_all_time = extrapolate(mean_all_time, to_be_vaccinated)
-		extrapolation_last_rate = extrapolate(data.iloc[-1], to_be_vaccinated)
-		extrapolation_mean_seven_days = extrapolate(mean_seven_days, to_be_vaccinated)
+	def extrapolate(rate, to_be_vaccinated):
+		days_extrapolated = int(np.ceil(to_be_vaccinated / rate))
+		days_extrapolated_herd_immunity = int(np.ceil((einwohner_deutschland * 0.7 - total) / rate))
 
-		mean_vaccination_rates_daily  = np.round(cumulative / range(1, len(cumulative) + 1))
-		vaccination_rates_daily_rolling_average = data.rolling(7).mean()
+		weeks_extrapolated = int(np.ceil(days_extrapolated / 7))
+		weeks_extrapolated_herd_immunity = int(np.ceil(days_extrapolated_herd_immunity / 7))
 
-		vaccinations_missing_until_target = einwohner_deutschland * herd_immunity - total
-		vaccination_rate_needed_for_target = vaccinations_missing_until_target / days_until_target
-		vaccination_rate_needed_for_target_percentage = mean_all_time / vaccination_rate_needed_for_target * 100
+		date_done = today + datetime.timedelta(days_extrapolated)
+		date_herd_immunity = today + datetime.timedelta(days_extrapolated_herd_immunity)
+
+		extrapolated_vaccinations = total + rate * range(-days_since_start_of_reporting, days_extrapolated - days_since_start_of_reporting)
 
 		return {
-			'daily': data,
-			'cumulative': cumulative,
-			'total': total,
-			'total_percentage': total_percentage,
-			'to_be_vaccinated': to_be_vaccinated,
-			'last_date': last_date,
-			'last_date_str': last_date.strftime('%d. %B %Y'),
-			'days_since_start': days_since_start_of_vaccination + 1, # Shift from zero to one-based-index
-			'start_of_vaccination_date': start_of_vaccination_date,
-			'start_of_vaccination_date_str': start_of_vaccination_date.strftime('%d. %B %Y'),
-			'vaccinations_by_week': vaccinations_by_week,
-			'extrapolation_mean_all_time': extrapolation_mean_all_time,
-			'extrapolation_last_rate': extrapolation_last_rate,
-			'extrapolation_mean_seven_days': extrapolation_mean_seven_days,
-			'mean_vaccination_rates_daily': mean_vaccination_rates_daily,
-			'vaccination_rates_daily_rolling_average': vaccination_rates_daily_rolling_average,
-			'vaccinations_missing_until_target': int(np.floor(vaccinations_missing_until_target)),
-			'vaccination_rate_needed_for_target': int(np.floor(vaccination_rate_needed_for_target)),
-			'vaccination_rate_needed_for_target_percentage': vaccination_rate_needed_for_target_percentage,
-			'vaccinations_last_day': data.iloc[-1],
-			'vaccinations_last_day_percentage': data.iloc[-1] / einwohner_deutschland * 100,
-			'vaccinations_last_day_vaccination_percentage': data.iloc[-1] / total * 100,
-			'vaccinations_last_week': vaccinations_by_week[Week.thisweek() - 1],
-			'vaccinations_last_week_percentage': vaccinations_by_week[Week.thisweek() - 1] / einwohner_deutschland * 100,
-			'vaccinations_last_week_vaccination_percentage': vaccinations_by_week[Week.thisweek() - 1] / total * 100
+			'rate': rate,
+			'rate_int': int(np.round(rate)),
+			'days_extrapolated': days_extrapolated,
+			'days_extrapolated_herd_immunity': days_extrapolated_herd_immunity,
+			'weeks_extrapolated': weeks_extrapolated,
+			'weeks_extrapolated_herd_immunity': weeks_extrapolated_herd_immunity,
+			'date_done': date_done,
+			'date_done_str': date_done.strftime('%d. %B %Y'),
+			'date_herd_immunity': date_herd_immunity,
+			'date_herd_immunity_str': date_herd_immunity.strftime('%d. %B %Y'),
+			'extrapolated_vaccinations': extrapolated_vaccinations
 		}
 
-	if 'Erstimpfung' in impfungen:
-		raw_first_vaccinations = impfungen['Erstimpfung']
-	elif 'Einmal geimpft' in impfungen:
-		raw_first_vaccinations = impfungen['Einmal geimpft']
-	elif 'Begonnene Impfserie' in impfungen:
-		raw_first_vaccinations = impfungen['Begonnene Impfserie']
 
-	if 'Zweitimpfung' in impfungen:
-		raw_second_vaccinations = impfungen['Zweitimpfung']
-	elif 'Vollständig geimpft' in impfungen:
-		raw_second_vaccinations = impfungen['Vollständig geimpft']
+	extrapolation_mean_all_time = extrapolate(mean_all_time, to_be_vaccinated)
+	extrapolation_last_rate = extrapolate(data.iloc[-1], to_be_vaccinated)
+	extrapolation_mean_seven_days = extrapolate(mean_seven_days, to_be_vaccinated)
 
-	data_first_vaccination = calculate_vaccination_data(raw_first_vaccinations)
-	data_second_vaccination = calculate_vaccination_data(raw_second_vaccinations)
+	mean_vaccination_rates_daily  = np.round(cumulative / range(1, len(cumulative) + 1))
+	vaccination_rates_daily_rolling_average = data.rolling(7).mean()
 
-	# Stand aus Daten auslesen
-	#stand = dates.iloc[-1]
-	#print_stand = stand.isoformat()
+	vaccinations_missing_until_target = einwohner_deutschland * 0.7 - total
+	vaccination_rate_needed_for_target = vaccinations_missing_until_target / days_until_target
+	vaccination_rate_needed_for_target_percentage = mean_all_time / vaccination_rate_needed_for_target * 100
 
-	# Stand aus offiziellen Angaben auslesen
-	stand = rki_file['Erläuterung'].iloc[1][0]
+	return {
+		'daily': data,
+		'cumulative': cumulative,
+		'total': total,
+		'total_percentage': total_percentage,
+		'to_be_vaccinated': to_be_vaccinated,
+		'last_date': last_date,
+		'last_date_str': last_date.strftime('%d. %B %Y'),
+		'days_since_start': days_since_start_of_vaccination + 1, # Shift from zero to one-based-index
+		'start_of_vaccination_date': start_of_vaccination_date,
+		'start_of_vaccination_date_str': start_of_vaccination_date.strftime('%d. %B %Y'),
+		'vaccinations_by_week': vaccinations_by_week,
+		'extrapolation_mean_all_time': extrapolation_mean_all_time,
+		'extrapolation_last_rate': extrapolation_last_rate,
+		'extrapolation_mean_seven_days': extrapolation_mean_seven_days,
+		'mean_vaccination_rates_daily': mean_vaccination_rates_daily,
+		'vaccination_rates_daily_rolling_average': vaccination_rates_daily_rolling_average,
+		'vaccinations_missing_until_target': int(np.floor(vaccinations_missing_until_target)),
+		'vaccination_rate_needed_for_target': int(np.floor(vaccination_rate_needed_for_target)),
+		'vaccination_rate_needed_for_target_percentage': vaccination_rate_needed_for_target_percentage,
+		'vaccinations_last_day': data.iloc[-1],
+		'vaccinations_last_day_percentage': data.iloc[-1] / einwohner_deutschland * 100,
+		'vaccinations_last_day_vaccination_percentage': data.iloc[-1] / total * 100,
+		'vaccinations_last_week': vaccinations_by_week[Week.thisweek() - 1],
+		'vaccinations_last_week_percentage': vaccinations_by_week[Week.thisweek() - 1] / einwohner_deutschland * 100,
+		'vaccinations_last_week_vaccination_percentage': vaccinations_by_week[Week.thisweek() - 1] / total * 100
+	}
 
-	stand_regex = re.compile('^Datenstand: (\d\d.\d\d.\d\d\d\d, \d?\d:\d\d) Uhr$')
-	m = stand_regex.match(stand)
-	stand_date = datetime.datetime.strptime(m.groups()[0], '%d.%m.%Y, %H:%M')
-	print_stand = stand_date.isoformat()
+if 'Erstimpfung' in impfungen:
+	raw_first_vaccinations = impfungen['Erstimpfung']
+elif 'Einmal geimpft' in impfungen:
+	raw_first_vaccinations = impfungen['Einmal geimpft']
+elif 'Begonnene Impfserie' in impfungen:
+	raw_first_vaccinations = impfungen['Begonnene Impfserie']
 
-	return dates, start_of_reporting_date, data_first_vaccination, data_second_vaccination, stand_date, print_stand
+if 'Zweitimpfung' in impfungen:
+	raw_second_vaccinations = impfungen['Zweitimpfung']
+elif 'Vollständig geimpft' in impfungen:
+	raw_second_vaccinations = impfungen['Vollständig geimpft']
 
-dates, start_of_reporting_date, data_first_vaccination, data_second_vaccination, stand_date, print_stand = parse_rki(filename=data_filename)
+data_first_vaccination = calculate_vaccination_data(raw_first_vaccinations)
+data_second_vaccination = calculate_vaccination_data(raw_second_vaccinations)
+
+# Stand aus Daten auslesen
+#stand = dates.iloc[-1]
+#print_stand = stand.isoformat()
+
+# Stand aus offiziellen Angaben auslesen
+stand = rki_file['Erläuterung'].iloc[1][0]
+
+stand_regex = re.compile('^Datenstand: (\d\d.\d\d.\d\d\d\d, \d?\d:\d\d) Uhr$')
+m = stand_regex.match(stand)
+stand_date = datetime.datetime.strptime(m.groups()[0], '%d.%m.%Y, %H:%M')
+print_stand = stand_date.isoformat()
 
 filename_stand = stand_date.strftime("%Y%m%d%H%M%S")
 
@@ -686,8 +678,8 @@ def plot_vaccination_done_days():
 	)
 	d = data_first_vaccination
 
-	days_remaining_daily = np.ceil((einwohner_deutschland * herd_immunity - d['cumulative']) / (d['mean_vaccination_rates_daily']))
-	days_remaining_rolling = np.ceil((einwohner_deutschland * herd_immunity - d['cumulative']) / (d['vaccination_rates_daily_rolling_average']))
+	days_remaining_daily = np.ceil((einwohner_deutschland * 0.7 - d['cumulative']) / (d['mean_vaccination_rates_daily']))
+	days_remaining_rolling = np.ceil((einwohner_deutschland * 0.7 - d['cumulative']) / (d['vaccination_rates_daily_rolling_average']))
 
 	ax.set_xlim(start_of_reporting_date, today)
 	ax.set_ylim(0, 2500)
@@ -730,8 +722,8 @@ def plot_vaccination_done_weeks():
 	)
 	d = data_first_vaccination
 
-	weeks_remaining_daily = np.ceil((einwohner_deutschland * herd_immunity - d['cumulative']) / (d['mean_vaccination_rates_daily'])) / 7
-	weeks_remaining_rolling = np.ceil((einwohner_deutschland * herd_immunity - d['cumulative']) / (d['vaccination_rates_daily_rolling_average'])) / 7
+	weeks_remaining_daily = np.ceil((einwohner_deutschland * 0.7 - d['cumulative']) / (d['mean_vaccination_rates_daily'])) / 7
+	weeks_remaining_rolling = np.ceil((einwohner_deutschland * 0.7 - d['cumulative']) / (d['vaccination_rates_daily_rolling_average'])) / 7
 
 	ax.set_xlim(datetime.date(2021, 3, 1), today)
 	ax.set_ylim(0, 52)
@@ -773,8 +765,8 @@ def plot_vaccination_done_dates():
 	)
 	d = data_first_vaccination
 
-	days_remaining_daily = np.ceil((einwohner_deutschland * herd_immunity - d['cumulative']) / (d['mean_vaccination_rates_daily']))
-	days_remaining_rolling = np.ceil((einwohner_deutschland * herd_immunity - d['cumulative']) / (d['vaccination_rates_daily_rolling_average']))
+	days_remaining_daily = np.ceil((einwohner_deutschland * 0.7 - d['cumulative']) / (d['mean_vaccination_rates_daily']))
+	days_remaining_rolling = np.ceil((einwohner_deutschland * 0.7 - d['cumulative']) / (d['vaccination_rates_daily_rolling_average']))
 
 	dates_daily = [today + datetime.timedelta(days) for days in days_remaining_daily]
 	dates_rolling = [today + datetime.timedelta(days) for days in days_remaining_rolling.dropna()]
@@ -819,8 +811,8 @@ def plot_vaccination_done_dates_detail():
 	)
 	d = data_first_vaccination
 
-	days_remaining_daily = np.ceil((einwohner_deutschland * herd_immunity - d['cumulative']) / (d['mean_vaccination_rates_daily']))
-	days_remaining_rolling = np.ceil((einwohner_deutschland * herd_immunity - d['cumulative']) / (d['vaccination_rates_daily_rolling_average']))
+	days_remaining_daily = np.ceil((einwohner_deutschland * 0.7 - d['cumulative']) / (d['mean_vaccination_rates_daily']))
+	days_remaining_rolling = np.ceil((einwohner_deutschland * 0.7 - d['cumulative']) / (d['vaccination_rates_daily_rolling_average']))
 
 	dates_daily = [today + datetime.timedelta(days) for days in days_remaining_daily]
 	dates_rolling = [today + datetime.timedelta(days) for days in days_remaining_rolling.dropna()]