#!/usr/bin/python # vim: set fileencoding=utf-8 : import numpy as np import matplotlib.pyplot as plt import pandas as pd import datetime import re import requests as req import locale import os.path locale.setlocale(locale.LC_ALL, 'de_DE.UTF-8') sources_folder = 'Quellen' plots_folder = 'Plots' einwohner_deutschland = 83190556 today = datetime.date.today() print_today = today.isoformat() filename_now = datetime.datetime.now().strftime("%Y%m%d%H%M%S") # DIN A4 Plots plt.rcParams["figure.figsize"] = [11.69, 8.27] # Download filename = '{}/{}_Impfquotenmonitoring.xlsx'.format(sources_folder, filename_now) r = req.get('https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Impfquotenmonitoring.xlsx?__blob=publicationFile') with open(filename, 'wb') as outfile: outfile.write(r.content) rki_file = pd.read_excel(filename, sheet_name=None, engine='openpyxl') raw_data = rki_file['Impfungen_proTag'] impfungen = raw_data[:-1].dropna() dates = impfungen['Datum'] daily = impfungen['Gesamtzahl Impfungen'] cumulative = np.cumsum(impfungen['Gesamtzahl Impfungen']) total_vaccinations = int(np.sum(daily)) total_vaccinations_percentage = float(total_vaccinations) / einwohner_deutschland mean_vaccinations_daily = np.mean(daily) mean_vaccinations_daily_int = int(np.round(mean_vaccinations_daily)) to_be_vaccinated = einwohner_deutschland - total_vaccinations days_extrapolated = int(np.ceil(to_be_vaccinated / mean_vaccinations_daily)) extrapolated_dates = np.array([dates[0] + datetime.timedelta(days=i) for i in range(days_extrapolated)]) extrapolated_vaccinations = mean_vaccinations_daily * range(days_extrapolated) mean_vaccinations_daily_up_to_date = np.round(cumulative / range(1, len(cumulative) + 1)) # Stand aus Daten auslesen #stand = dates.iloc[-1] #print_stand = stand.isoformat() # Stand aus offiziellen Angaben auslesen stand = rki_file['Erläuterung'].iloc[1][0] stand_regex = re.compile('^Datenstand: (\d\d.\d\d.\d\d\d\d, \d\d:\d\d) Uhr$') m = stand_regex.match(stand) stand_date = datetime.datetime.strptime(m.groups()[0], '%d.%m.%Y, %H:%M') print_stand = stand_date.isoformat() filename_stand = stand_date.strftime("%Y%m%d%H%M%S") def plot_extrapolation_portion(percentage): print_percentage = int(percentage * 100) plot_filename = '{}/{}_extrapolated_to_{}_percent.pdf'.format(plots_folder, filename_stand, print_percentage) if os.path.isfile(plot_filename): print('Plot {} already exists'.format(plot_filename)) return fig, ax = plt.subplots(1) plt.title( 'Tägliche Impfquote, kumulierte Impfungen und lineare Extrapolation bis {:n} % der Bevölkerung Deutschlands\n' 'Erstellung: {}, Datenquelle: RKI, Stand: {}\n' 'Impfungen gesamt: {:n} ({:n} %), Durchschnittliche Impfrate: {:n} Impfungen/Tag'.format( print_percentage, print_today, print_stand, total_vaccinations, np.round(total_vaccinations_percentage * 100, 2), mean_vaccinations_daily_int ) ) ax2 = ax.twinx() ax.bar(dates, daily, label='Tägliche Impfungen', color='blue') ax.plot(dates, mean_vaccinations_daily_up_to_date, color='violet', label='Durchschnittliche Impfquote\nbis zu diesem Tag (inkl.)') ax2.set_ylim([0, einwohner_deutschland * percentage]) ax2.set_xlim(xmax=dates[0] + datetime.timedelta(days=percentage * days_extrapolated)) ax2.grid(True) ax2.plot(dates, cumulative, color='red', label='Kumulierte Impfungen') ax2.plot(extrapolated_dates, extrapolated_vaccinations, color='orange', label='Extrap. kumulierte Impfungen\n({:n} Impfungen/Tag)'.format(mean_vaccinations_daily_int)) #ax2.plot() ax.legend(loc='upper left') ax.get_yaxis().get_major_formatter().set_scientific(False) ax.set_xlabel('Datum') ax.set_ylabel('Tägliche Impfungen') ax2.legend(loc='center right') ax2.get_yaxis().get_major_formatter().set_scientific(False) # Estimated percentage for herd immunity #ax2.axline((0, einwohner_deutschland * 0.7), slope=0, color='green') ax2.set_ylabel('Kumulierte Impfungen') plt.savefig(plot_filename) plt.close() print('Created plot {}'.format(plot_filename)) plot_extrapolation_portion(0.1) plot_extrapolation_portion(1.0)